A New Rigorous Upper Bound for the Inverse Critical Temperature of the Two-Dimensional Coulomb Gas

Gastão de Almeida Braga ${ }^{1}$

Received August 7, 1990; final October 26, 1990

Abstract

In this paper we show how to improve the recent result $\beta_{c} \leqslant 17.2 \pi$ on the inverse critical temperature for the two-dimensional Coulomb gas at low density to get the following upper bound: $\beta_{c} \leqslant 16 \pi$.

KEY WORDS: Two-dimensional Coulomb gas, Kosterlitz-Thouless phase transition, inverse critical temperature; dipole phase; plasma phase; multiscaling expansion.

In a recent paper, ${ }^{(1)}$ it has been shown how the energy estimate for the two-dimensional lattice Coulomb gas at low density could be improved to get the upper bound

$$
\beta_{c} \leqslant 17.2 \pi
$$

where $\beta_{c}=1 / k T_{c}$ and T_{c} is the critical temperature.
In this short communication, we show how to improve this bound to get

$$
\begin{equation*}
\beta_{c} \leqslant 16 \pi \tag{1}
\end{equation*}
$$

We start by reviewing the argument in ref. 1: let ρ_{k+1} and σ_{k+1} be distinct neutral charge densities living in the background of charge distributions being renormalized by complex translations. ρ_{k+1} and σ_{k+1} are functions of $j \in Z^{2}$. They satisfy the following conditions:

[^0]1. The perimeter of $\operatorname{supp}\left(\rho_{k+1}\right)$ is approximately l_{k}, where supp is the support of $p_{k+1}(j)$.
2. $\operatorname{supp}\left(\rho_{k+1}\right) \subset B_{k+1}$, where B_{k+1} is an $l_{k+1} \times l_{k+1}$ square.
3. $\operatorname{dist}\left(\rho_{k+1}, \sigma_{k+1}\right) \geqslant l_{k+2}$, where $\operatorname{dist}(\cdot, \cdot)$ stands for the distance between the supports of charge densities.
l_{k} is the length at scale k (see ref. 2 for details). The boundary contribution to the "energy estimate" is finite (and small in the low-density regime) if the following inequality holds:

$$
\begin{equation*}
l_{k} \times\left(\frac{l_{k+1}}{l_{k+2}}\right)^{2}=l_{k}^{1+2 \theta-2 \theta^{2}}<\delta^{k} \tag{2}
\end{equation*}
$$

where $0<\delta<1$ and θ is the exponent characterizing the rate of growth of the sequence $\left\{l_{k}\right\}, l_{k+1}=l_{k}^{\theta}$. Inequality (2) is satisfied for $\theta>(\sqrt{3}+1) / 2$, which gives the result $\beta_{e} \leqslant 17.2 \pi$.

One may ask what happens if neutral charge densities $\rho_{k+1} \subset B_{k+1}$, whose perimeter is of order l_{k}, are further away from each other. For such, we generalize condition 3 given above:

$$
\begin{equation*}
\operatorname{dist}\left(\rho_{k+1}, \sigma_{k+1}\right) \geqslant l_{k+1+n} \tag{3}
\end{equation*}
$$

where $n=1,2,3, \ldots$. The distance requirement (3) can be obtained by imposing that dipoles formed at scale k will stay renormalized at scale $k+n$, as the next proposition shows. We observe that it is an unnatural condition and it is the reason why we cannot obtain a result better than (1). In what follows, $z\left(\rho_{k}\right)$ stands for the activity of ρ_{k}. We remark that (see ref. 2 for details)

$$
\begin{align*}
& z_{k+1}=z_{k}^{1+\alpha \varepsilon} \\
& \frac{l_{k+1}}{l_{k}}=z_{k}^{-\alpha} \geqslant l_{k}^{\theta-1} \tag{4}
\end{align*}
$$

where z_{k} is the activity at scale $k ; z_{0}=z$ is the initial activity; ε is a positive number to be chosen later; α is the exponent relating the length scales and activities. Inequality (4) is satisfied once

$$
\begin{equation*}
\alpha \varepsilon>\theta-1 \tag{5}
\end{equation*}
$$

Proposition 1. Let ρ_{k+1} be a neutral charge density localized on B_{k+1} such that

$$
\begin{gathered}
\rho_{k+1}=\sum c_{i} \rho_{k}^{i}, \quad \text { where } i \geqslant 2 \\
\left|z\left(\rho_{k}\right)\right|<z_{k}
\end{gathered}
$$

Suppose that, during the induction $k+2 \rightarrow k+3 \rightarrow \cdots k+n$, ρ_{k} remains isolated (i.e., $\rho_{k}=\rho_{k+n}$). If

$$
\begin{equation*}
\frac{\varepsilon}{\varepsilon+2}>\frac{2 \alpha \varepsilon}{\varepsilon+2}+\left[(1+\alpha \varepsilon)^{n}-1\right] \tag{6}
\end{equation*}
$$

then $\left|z\left(\rho_{k+, n}\right)\right|<z_{k+n}$.
Proof. For each scale change $L_{k+i} \rightarrow L_{k+i+1}$ we get an entropy factor of $\left(L_{k+i+1} / L_{k+i}\right)^{2}$ for $z\left(\rho_{k+n}\right)$. Then

$$
\begin{align*}
\left|z\left(\rho_{k+n}\right)\right| & <\left|z\left(\rho_{k}\right)\right|^{2}\left(l_{k+1} / l_{k}\right)^{4}\left(l_{k+2} / l_{k+1}\right)^{2} \cdots\left(l_{k+n} / l_{k+n-1}\right)^{2} \\
& <z_{k}^{2}\left(l_{k+1} / l_{k}\right)^{4}\left(l_{k+2} / l_{k+1}\right)^{2} \cdots\left(l_{k+n} / l_{k+n-1}\right)^{2} \tag{7}
\end{align*}
$$

Imposing the condition

$$
\begin{equation*}
\left|z\left(\rho_{k+n}\right)\right|<z_{k+n} \tag{8}
\end{equation*}
$$

we rewrite the product (7) and z_{k+n} in terms of z_{k} and compare exponents to conclude that (6) is a sufficient condition for (8) to be true.

The parameter ε is chosen such that

$$
\begin{equation*}
0<\varepsilon<\frac{\beta}{4 \pi(1+S)}-2 \tag{9}
\end{equation*}
$$

S stands for the boundary contributions coming from the "energy estimate." S is a function of z, the initial activity, and it goes to zero as z goes to zero (see ref. 2 for details). The equivalent to (2) will be

$$
l_{k} \times\left(\frac{l_{k+1}}{l_{k+1+n}}\right)^{2}=l_{k}^{1+2 \theta-2 \theta^{n+1}}<\delta^{k}
$$

which holds for values of θ satisfying the inequality

$$
\begin{equation*}
1+2 \theta-2 \theta^{n+1}<0 \tag{10}
\end{equation*}
$$

In the Appendix we show that α and θ can be found satisfying (5), (6), and (10) if and only if ε satisfies the lower bound

$$
\varepsilon>\frac{4 \theta^{2}-4 \theta+2}{2 \theta-1}
$$

which implies, after using (9),

$$
\begin{equation*}
\beta>8 \pi(1+S) \times \frac{2 \theta^{2}}{2 \theta-1}>8 \pi(1+S) \times \frac{2 \theta_{c}^{2}}{2 \theta_{c}-1} \tag{11}
\end{equation*}
$$

where $\theta_{c}=\theta_{c}(n)$ is the root of (13). Taking the limits $\theta_{c}(n) \searrow 1$ as $n \rightarrow \infty$ (see the Appendix) and $S \rightarrow 0$ as $z \rightarrow 0$, we get

$$
\beta>16 \pi
$$

and therefore the claimed result (1).
We observe that, for $n=1$, our result (11) is the same as the one appearing in ref. 1. To see it, substitute (13) in (11) to obtain

$$
\beta>8 \pi \times \frac{\theta_{c}}{2-\theta_{c}^{n}}
$$

which, for $n=1$, gives

$$
\begin{equation*}
\beta>8 \pi \times \frac{\theta_{c}}{2-\theta_{c}} \tag{12}
\end{equation*}
$$

which is the formula for β_{c} appearing in ref. 1.

APPENDIX

Let $\theta_{c}(n)$ be the real positive root closest to 1 of

$$
\begin{equation*}
\frac{1+2 \theta}{2 \theta}=\theta^{n} \tag{A1}
\end{equation*}
$$

From the intersection between the graphics of θ^{n} and $1+1 / 2 \theta$ it follows that

$$
\begin{aligned}
\theta_{c}(n) & >1 \\
\theta_{c}(n+1) & <\theta_{c}(n) \\
\theta_{c}(n) & \searrow 1 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

Note that the inequality (10) is satisfied by any $\theta>\theta_{c}(n)$ because $2\left(\theta^{n+1}-\theta\right)>2 \theta_{c}\left(\theta_{c}^{n}(n)-1\right)=1$.
α_{1} is defined as the root of

$$
\varepsilon /(\varepsilon+2)=2 \alpha \varepsilon /(\varepsilon+2)+\left[(1+\alpha \varepsilon)^{n}-1\right] \equiv f(\alpha)
$$

Observe that $f(\alpha)$ is an increasing polynomial function of α. Let $\alpha_{e}(n) \equiv\left[\theta_{c}(n)-1\right] / \xi$. Observe that, for $\theta>\theta_{c}(n)$, the following inequality is true:

$$
\frac{\theta-1}{\varepsilon}=\alpha>\alpha_{c}=\frac{\theta_{c}-1}{\varepsilon}
$$

Proposition 2. $f\left(\alpha_{c}\right)<f\left(\alpha_{1}\right)$ if and only if

$$
\varepsilon>\left(4 \theta_{c}^{2}-4 \theta_{c}+2\right) /\left(2 \theta_{c}-1\right)
$$

Proof.

$$
f\left(\alpha_{c}\right)=\frac{2\left(\theta_{c}-1\right)}{\varepsilon+2}+\theta_{c}^{n}-1=\frac{2\left(\theta_{c}-1\right)}{\varepsilon+2}+\frac{1}{2 \theta_{c}}=\frac{2\left(\theta_{c}-1\right)+\varepsilon / 2 \theta_{c}+1 / \theta_{c}}{\varepsilon+2}
$$

Therefore, we have

$$
f\left(\alpha_{c}\right)<\varepsilon /(\varepsilon+2) \Leftrightarrow 2\left(\theta_{c}-1\right)+\frac{\varepsilon}{2 \theta_{c}}+\frac{1}{\theta_{c}}<\varepsilon
$$

from which the result follows.
Therefore, by the continuity of $f(\alpha)$, we can choose $\theta>\theta_{c}$, close enough to θ_{c}, such that the inequalities (5), (6), and (10) are satisfied.

Remark. After the completion of this work the author received a preprint ${ }^{(3)}$ in which the Kosterlitz-Thouless phase is established for $\beta>8 \pi$ and small z.

REFERENCES

1. D. H. Marchetti, Comments on "Power law fall off in the two dimensional lattice Coulomb gas," Rutgers University preprint, J. Stat. Phys., to appear.
2. Gastão de Almeida Braga, The two dimensional lattice Coulomb gas at low temperature, Ph.D. thesis, New York University (1989).
3. J. Dimock and T. R. Hurd, A renormalization group analysis of the Kosterlitz-Thouless phase, preprint (1990).

[^0]: ${ }^{1}$ Universidade Federal de Minas Gerais, Departamento de Matemática-ICEX, Caixa Postal 1621, C.E.P. 31270, Belo Horizonte, M. G., Brazil.

